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Abstract

Introduction: The energy sector poses one of the greatest
challenges in most nations as it influences economic growth.
Decades of neglect of renewable energy sources has resulted in
over dependence on hazardous fossil-fuel.

Aims: In this study, we reported the development of high-
performance lead-free methyl ammonium germanium halide
(CHsNHsGels) based Perovskite Photovoltaic cells using
computational method.

Materials and Methods: The optical property of two dimensional
(2D) graphene and mxenes nanocomposites as hole and electron

Email: transporters were incorporated to optimize the device performance
Ladansons@gmail.com; using SCAP 1D software. The effect of several parameters on the
Ladan@basug.edu.ng solar cell performance were investigated such as thicknesses of

perovskite, hole-transporting materials (HTMs), defect density, hole
mobility, and metal electrode work function on the charge collection.
Results: Ge-based PSCs with graphene and mxenes (TisCz2) and
TMDCs (NiS2/NiTez2) as alternating HTMs exhibited a remarkable
power conversion efficiency (PCE) reaching 21% and a 62.01V;
0.60 mAcm2; 80.10% as open-circuit voltage, current density and
fill factor respectively.

Conclusion: Our results advocate for a simple and safe design of
HTMs for highly efficient and stable solar cells at low cost.

Keywords: Lead-free, Germanium halide, based Perovskite
Photovoltaic cells, optical property, graphene, mxenes, defect
density, hole mobility, work function.
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1. INTRODUCTION

The energy sector directly influences economic growth of any nation. Implementation of
renewable energy strategy has been on the rise due to recent global initiatives on sustainable
development. One of the greatest challenges is its utilization and decades of neglect has resulted in over
dependence on imported fossil-fuel which overburdened the annual national budget (Al-Mhairat and Al-
Quraan[1]; and Saleh et al.[2]). Solar and wind energy has become the world’s most renewable energy
sources. They are cheap, affordable and clean without producing greenhouse gas emissions (Mas’ud et
al.[3]).

Studies on improving the performance of solar cells are on the increase and thin films Perovskite
solar cells (PSCs) in particular has received significant attention. The PSCs, copper indium gallium
diselenide (CIGS) and cadmium telluride (CdTe) based heterojunction SCs are being worked upon since
single junction silicon SCs have a laboratory scale efficiency ~ 25% achieved as a result of the over 60
years of research. In the absence of non-radiative recombination, the Shockley-Queisser limit for a single
p-n junction solar cell with energy bandgap (Eg) between 1.1 and 1.4 eV is ~33%. This shows that ~70%
of the entire energy coming from the sun does not contribute to the generation of solar electricity. The two
phenomena that are main sources of loss are (i) transmission of photons with energies lower than the Eg
of the material without absorption and (ii) the loss of energy by photons of energy higher than the Eq4 of
the material via phonon emission at the rotational and vibrational energy levels which lie at the continuum
band. In PSCs, their stability and efficiency can be improved to withstand atmospheric hazards due to
heating, humidity, and rain (Igbal et al.[4]; and Ladan and Bubal3]). Two-dimensional (2D) titanium
carbide (TisC2) was the first mxene reported at Drexel University, USA while Ti2C, Nb2C, V2C, TisCN,
Mo2C, and TasCs have been prepared successfully among the several theoretically predicted mxenes
(Rahman et al.[&]).

Graphene is 2D sp? hybridised carbon atom in a hexagonal pattern. 2D transition metal
dichalcogenide (TMDCs) MX2 are mostly layered structures and in Co, Rh, Ir and Ni based TMDCs, NiSz
forms a pyrite structure and NiTe:z is layered pattern. MoS2, WSz, MoSez and WSe:z have been identified
as semiconductors. 2D materials are of atomic thickness. They have excellent optical, electrical and
thermal conductivities at room temperature and about 90% transmittance to solar rays making them
suitable for optoelectronic and energy conversion devices (Geim and Novoselov,[7]; Paulchamy et al.[g]).
Their properties can be tailored to suit different applications due to the large surface area above 3000
m?/g and are capable of absorbing solar radiation in the UV-visible region (Alam et al.[2]; Chou et
al.[10]). There is huge flux of photons from the Sun on the earth and if properly harnessed can solve the

energy crisis.

There is need for the development of high-performance lead-free methyl ammonium germanium
halide (CHsNHsGels) PSCs using 2D graphene, Mxenes and TMDCs nanocomposite as hole and

electron transporters to optimize the device performance using SCAP 1D software. Integration of carbon
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based material in designing optoelectronic devices can improve efficiency, reduced cost and enhanced

life time.

2. MATERIAL AND METHODS

Numerical modeling were performed using SCAPS-1D software under AM 1.5 solar spectrum at
100 mW/cm? light intensity to obtain the photovoltaic performance. The thin film PSCs is modelled in
layers characterized by the thickness, doping level, carrier density, charge mobility and other physical
properties using 2D HTMs. Table 1 shows the parameters that were collected from recent studies.
SCAPS 1D is based on coupled differential equations Poisson’s equation and the continuity equations for
electrons and holes. They are solved self-consistently by iteration technique to simulate the electric field
distribution, current density, transport properties, and recombination profile (Burgelman et al.[11]; and

Kumar et al.[12]).

The Poisson equation relates the static electric field = to the space-charge density . The electron
and hole transport equations 2 and 3 are coupled by the electric field ¢, a set of coupled differential
equations.

dglx) _ dslx) _ pla 1)
dx dx EpEx

where @is the electrostatic potential,g5is the permittivity of free space and &£,is the relative

permittivity of the medium.

D, ,+u5 +n“9d —R.x) + Gx}=0 (2)

Dy, ‘+u5 +,_w —Rylx) + G x) = (3)
Where e and p are electron and hole densities, u, and u,are the electron and hole mobilities, D,
and Dpare the electron and hole diffusion constants, R{x} and G{x! are the recombination and photo-

generation rates, respectively.

Table 1: Material property for each layer
ITO PEDOT: | MAPbI3 MAGel; | PCBM Graphene 2D
PSS
Thickness, 500 200 450 WR 200 WR
nm
Eq(eV) 3.65 1.60 1.55 1.90 2.0 2.7
% (eV) 4.80 3.40 3.75 3.98 3.9 4.5
Nc(cm-3) 5.8 x10"® | 10% 2.20 1018 25x10* | 3.10x 10"
Nv (cm-3) 1018 1022 2.20 1015 25x10* | 3.10x 10"
Na (cm-3) 1020 1022 10.0 10° 2.93
1017
Na (cm3) 0 0 5x10'8 10° 0 0
Er 8.90 3.0 6.50 10 3.9 3.3
1y (cm2cts ) | 10.0 45x10* | 2.0 16.20 0.02 15,000
uy (cm2cts ) | 10.0 9.9x10% | 2.0 10.10 0.02 15,000
Defect - 2.5x10% | 1.5x10'6 104 1x10'® 1x10%
density
Work - - - - - 4.0
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Where Eq (eV) is the band gap energy, x (eV) is the electron affinity, Nc (cm3) is effective density
of states at CB, Ny (cm3) is the effective density of states at VB, Na (cm™) is the donor density /density of
p-type doping, Na (cm) is the acceptor density/ density of n-type doping, = is the relative dielectric
permittivity, u, (cm2c's) is the mobility of electron, p, (cm2c's') is the mobility of electron, Nt (cm/s) is

the electron thermal velocity, N (cm/s) is the hole thermal velocity.

Table 2: Photovoltaic parameters of the solar cells

Structure Jsc (MA/cm?) Voc (V) FF (%) PCE References
(%)

Cu20 /CH3NH3sPbls/n-cSi 0.67 48.58 90.0 19.50 | This study

2D/TisC/CHsNHsGels/Ag 0.60 62.01 80.10 21.02 | This study
30.87 0.6879 | 84.31 17.90 | Gagadeep et

P-graphene/CHsNH3Pbls/n- al. [18]

cSi

mTiOz+G/perovskite/GO/spiro | 22.48 1.08 75.12 18.19 | Lakhdar et al.

-OMeTAD [15]

CHsNHsPbls-based solar cell | 23.44 0.93 60.75 13.30 | Agresti et al.

Simulation, TiOz [19]
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Figure 1: Outline (a) Lead Free PVCs with (b) 2D inter layer 100-1000 nm

Page 16



LASU Journal of Research and Review in Science

24 2 | E
y
14 4 Cu0 :
- "1™ CsPbl,  N,=10"cm’
> _—
% 01 CsPbl, N,=10"cm’ i 04—
o > e
0 1 2 4.
Ay )
w c
w
24 -24
-34 -3 Sn0,
'4 v T v T v T v T '4 v T v T ¥ T v T
0.0 0.2 04 06 0.8 0.0 0.2 04 06 08
Position (um) Position (um)
(a) (b)

Figure 2: Energy band diagrams of the device with different doping density (a) NA= 10-'3 cm= and (b) NA
=1018 cm=.
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Figure 3 (a) Quantum efficiency of PSCs without 2D HTL (b) J-V of the PSCs with Graphene-TiO: at
2.5um

Page 17



LASU Journal of Research and Review in Science

Absorbance: contour map Transmittance: contour map
800.0 0.004320

700.0 0.003808

600.0 0.003295

500.0 0.002783

400.0 0.002270

T(N)

300.0 0.001758

200.0 0.001245

/ 100.0

0000

2 4 6 200 300 400 500 600 700 800 900
A (nm) A (nm)

7.325E-4

2.200€-4

Figure 4: Contour Map of the absorbance and transmittance against wavelengths
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Figure 6: The occupation probability of deep defect for electrons and the carrier density
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Figure 8: Generation and recombination profile

3. RESULTS AND DISCUSSION

In the solar cell, the absorber plays a crucial role on the performance and is composed of Ge-
based perovskite photo-absorber. The thickness is such that it equilibrates the photo-generated electrons
and holes with reduced absorption and recombination profile. By optimizing the absorbers thickness,
band gap energy (1.9 eV), in perovskite device, the open circuit voltage (Voc), short circuit current (Jsc), fill
factor (FF) and power conversion efficiency (PCE) for the various 2D HTMs were obtained at 21% and a
0.52V; 60.50 mAcm2; and 80.07% respectively (Ladan and Buba [5]).

The Jsc increases with the increase in the absorber layer thickness and reaches the maximum. It
has revealed that the thinner the absorber, the more photons and excess carrier concentration with longer
wavelength and generation of improved electron-hole pairs are produced. Voc slightly decreases as
absorber layer thickness increases due to more carrier recombination. It showed Voc is depended on
photo generated Jsc, dark saturation current of the cell depends on the recombination profile which is a
measure of the amount of recombination in the device. The FF of 80% with the absorber thickness
changing from 50 nm to 250 nm is due to the high series resistance and shunt conductance of the device,

a measure of the carrier's mobility (Lin et al. [20]; and Gagadeep et al. [18]).

As the device efficiency increases with thickness of the Ge and saturates at 600 nm, it means
more light absorption and more excess carrier concentration leads Jsc increase. Ge has very high

absorption coefficient up to 105 cm™, it implies that it can reach high values of Jsc and PCE in a very thin
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absorber thickness of about 450 nm. High defect densities in the device can limit the performance of the
solar cells. It induces carrier recombination and lifetime reduction, using 2D HTMs alternatively increases
the efficiency due to minimized defect and less resistance by enhancing hole (+) mobility. On doping the
absorber layer with 2D materials, it was recorded that when the dopant concentration is larger than 1000
cm3, the Jsc decreases, whereas the efficiency and Voc increases. The effect of the metal electrode work
function W (Pt: 5.65 eV, Pd: 5.3 eV, Ag: 4.7 eV, Cu: 4.65 eV, Au: 5.1 eV, Ni: 5.0 eV) on the output of the
device were explored. The PCE increases with increase in the W of the contact metal agreement with
similar studies. With the 2D materials, noble metals Au, Ni and Ag indicated better improvement
compared to other metals. The high W of the metal produced a higher barrier for electron transfer from
the 2D HTMs to metal contact (Lin et al. [20]; Gagadeep et al. [18]; Dadashbeik et al. [21]).

The transmitted light, contour map (fig. 5) for the absorbance versus the wavelength of the
radiation indicated peak heat generation at 700 nm/tr between 0.5 and 0.25 above violent region at the

same projection to achieve maximum absorbance and transmittance at 550.5 nm[3].

The operation of the device in generating power can be affected by changes in atmospheric
temperature, as a result, the variation of photovoltaic parameters as a function of temperature for all 2D
HTMs considered were simulated. It is clear that Jsc slightly increased along with temperature increase,
while Voc decreases. This can be attributed to reduction in energy band gap. The effect of temperature on
the electron and hole mobility, and carrier density on the device needs further investigation due to the
dynamic nature of the HTMs (fig 6-7). 2D graphene, mxenes and TMDCs, as HTM as contact layer in thin
films solar cell reduces the optical and energy losses. They improved the absorption of radiation since
they are about 97.7% transparent to solar rays and reflection losses at interface decreases Jsc by 9%

(Kumar et al. [12]; Gagadeep et al. [18]; Kosyanhenko et al. [22]).

4. CONCLUSION

Using SCAPS-1D Solar simulating software, we have studied the effect of absorber thickness, defect
density, carrier mobility, operating temperature and metal work function of CHsNH3Gels based PSCs. The
study indicated an optimum absorber thickness of about 600 nm for improved efficiency of the device. An
increase in the PCE exceeding 20% using high surface area 2D HTMs (graphene, Mxene and TMDCs)
due to improved area of exposure, transparency, thickness, and excellent optical, electrical and thermal
conductivities. They have higher hole mobility and decreased defect density. The photovoltaic parameters
of 2D layered HTM obtained using SCAPS simulation for the first time will lead to more investigations on
their applications for improved efficiency, stability and life span. The introduction of the novel materials
enhance the interaction between the layers which is beneficial for electrical conductivity and efficiency of
solar cells, charge transport, and suppressed recombination of electron-hole pair.

Graphene and its analogue, mxenes and TMDCs exhibit unique optoelectronic properties. Rational

assembly of individual monolayers into bilayers or heterostructures provides a means for the realizations
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of a wide range of novel quantum materials and devices with tunable electrical, mechanical, optical and

transport phenomena based on unique spin-valley degrees of freedom and strong electron correlations.
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